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Abstract

This article reports how weather effects were reduced or even removed on visitations for New Zealand’s walks,
employing an AI method combined with time series theory. This includes:

1: a research statement
2: a gentle introduction to Neural Networks models and time series decomposition method
3: analyses: modelling each temporal component separately using Neural Networks
4: case studies: Tongariro Xing Mangatepopo, 100055887
5: Recommendations and future works
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1 Introduction and preview of the tools
NZ is the home of hundreds of tracks geographically distributed across New Zealand. It is known that those track locations
are impacted by heterogeneous weather patterns, with various degrees, which unavoidably influence Visitors’ decisions to
visit. What complicated visitor’ decisions also include weekends or/and public holiday effects, i.e., visitors more likely to
go during (long) weekends or/and holidays.

In our last pioneer study, an AI approaches has been adopted that have teased apart weather effects from weekend and
holiday effects on visitor numbers and relative impacts from each impact on any tracks has been quantified and ranked.

In this study however, we focus on building a novel AI-powered tool to quantify weather adjusted interannual visitation
trend and compare with its unadjusted counterpart in New Zealand tracks.

1.1 Why weather adjusted visitation trend is important for DOC
D & E team in DOC publish visitation series weekly based on the observed ‘raw’ visitor counts from counters. However,
such raw visitor counts does not necessarily and always reflect the true demands for tracks from the visitors and does
not show the underlying trend. This is simply because many factors like weather events especially extreme ones or/and
unusual warm or cold seasons, can often obscure such true demands and the underlying trend. For examples, if we drill
down to daily level, Fig.1 shows the site Tongariro Xing Mangatepopo Tk, renowned to its high wind speed, the visitor
counts almost dropped to none on 2012-03-20, while on the same day and month but different years, like year 2010, when
wind speed is in the ‘normal’ range (2-5 m/s), visitor counts can be over 1000. Therefore, it is hard to make management
and investment decisions if one only based on the ‘raw’ visitor counts, if one looks at visitor counts for year on year change.
The question is what the true demands and the underlying trend would be had unusual weather events and seasons were
not there? The answer is to compute the weather adjusted demands or visitation trend.

Figure 1: Daily visitor counts and weather parameters on March 20 since 2009 for Tongariro Xing Mangatepopo Tk,
100055887
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2 Methodology
Broadly speaking, traditional statistical science have three approaches to estimate the trend component of a time series.

The simplistic approach falls into linear regression realm where ordinary least-squares method and its variants are used
to estimate a slope and intercept that describe the trend component. Such approach and its variants are relatively easy to
use and ubiquitous in the literature. However, most of series in the real life can violate one or more (strong) assumptions
that underpin linear regression (Montgomery, Peck, and Vining 2006), for example, by examining our visitation series, we
often see noise component is not bell-shaped, assuming series is represented by additive trend and noise components with
a time dependent scaling function.

There are also plethora methods in nonlinear approach, e.g., based on ARIMA (Storch and Cambridge 1999). Also,
some researchers consider trend component are basically in a certain nonlinear form and use various numeric optimization
algorithms, (e.g., weighted least-squares) to estimate the trend (Michalewicz and Fogel 2004).

Nonparametric approach is a drastically different one where the trend is estimated by a form of kennels function where
researches have to carefully justify the selection of the associated kennel parameters, e.g., bandwidth in Epanechnikov
kernel, and apply it to smooth the series (Gasser and Müller 2006).

Each apporach has its merit, however, the problem is that most of methodologies derived from those approaches are
only suitable for estimating trend for the univariate time series, which applicable only if it have its own relatively isolated
and independent data generating process. It therefore would be unrealistic to directly apply those methodologies to our
visitation series, and ignore all ‘co-evolved’ time series from weather parameters and other latent variables, which have
impact on it.

2.1 Our Approach
Overall, our approach is to integrate Artificial neural networks (ANNs) with classic time series decomposition theory, to
compute weather adjusted trend for visitation series.

2.1.1 ANNs

We are living in the world that increasingly rely on products and services featured some Artificial Intelligence (AI). AI,
especially those based on Artificial neural networks (ANNs), are rapidly becoming essential and dominant for analysis of
complex data and for decision support.

ANNs are highly parameterized, non-linear models with sets of interconnected processing units called neurons that can
be used to approximate the relationship between input and output signals of a complex system (Stefaniak, Cholewiński,
and Tarkowska 2006). Typically, ANNs are applied to predict the response of one or more variables given one to many
explanatory variables, where smooth functions are fitted to dataset while residual error are minimized through iterative
training (Hornik 1991)

Compared to conventional statistical models where traditional statisticians used (e.g., generalized linear/additive
regression), ANNs have been proved to have a more powerful (probably unmatched) predicting capability.

2.1.2 Time series decomposition

It is possible that a time series yt can be decomposed in three different temporal components in an additive form, Equation
(1): a trend component Tt , a seasonal component St and a reminder pattern Rt, all at time t (Hamilton 1994; West 1997).
Here, we decomposed on the daily data for VC and all weather parameters in consideration for modelling as per Section
2.2.

yt = Tt + St + Rt (1)

Tt is the low frequency variation in data together with nonstationary, long-term change in level. St is the variation in
the data at or near the seasonal frequency. Rt is the remaining variation in data beyond that in Tt and St.

2.2 ANNs Model and its Specifications
The input is a set of predictors: four weather parameters (daily wind speed (WS), daily minimal temperature (T), daily
rain amount (Rain), daily solar radiation (SR)) and a various number of lagged weather parameters. The output is daily
visitor count (VC).

The primary reason to consider lagged structure in model specifications is weather parameters are usually autocorrelated.
Both over and under -specification of lags were known to have impact on the models response, i.e., VC. In this study, we
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followed Wang and Lu (2006) and Lu and Wang (2014) to identify the optimal lags. For a more systematic, generic and
rigorous treatment on the effects of past history of predictors, we recommend the work from Jørgensen (2004).

2.3 Full-season models to establish daily relationship between VC and its influentials
Contrast with our previous weather sensitivity study, where only peak season data were used, in this study, daily data of
both VC and weather parameters from full seasons were used in modelling, as we aims at comparing year-on-year change
of both adjusted and unadjusted visitation series.

2.4 ANNs configuration
Number of layers of ANNs can affect models performance. We tested a range of hidden layers and found single hidden
layer mostly sufficed our purpose. Increased layers, in some cases, did increase ‘prediction’ accuracy, but such gains are
little and negligible. Root mean squared errors (RMSE) were used as the metric in model selections. For a through
consideration of ANNs and its applications, we recommend the works from Subana Shanmuganathan (2016).

2.5 ANNs on three temporal components and their residuals as the adjusted weather
trend

We tested the configured ANNs on its ability to establish the relationship between VC and those six weather parameters
on one popular New Zealand walk: Tongariro Alpine Crossing, as promising results were obtained in our last weather
sensitivity study (on peak season data): Tongariro Alpine Crossing are almost twice as much as affected by weather
(summed by all 4 weather parameters) compared to Dolomite Point, which likely reflected the fact and experience as per
the subject matter expert from tourism industry.

Here, we firstly tested the same configured and specifications ANNs on the full season data on yt, then progressively
on Tt, St, Rt, which were obtained from Section 2.1.2. Lastly, we extracted residuals for ANNs on each temporal
components which then were summed up as the adjusted daily weather trend, denoted as trend_adj_nonLinear. We
compared year-on-year change of both trend_adj_nonLinear and unadjusted visitation trend, which is Tt but denoted
as trend_unadj_nonLinear for clarity.

2.6 Source of weather data and simulation software
All daily weather data were estimated on a regular (~5km) grid covering the whole of New Zealand, i.e., VCSN data
simulated by NIWA. The estimates are produced every day, based on the spatial interpolation of actual data observations
made at climate stations located around the country. A thin-plate smoothing spline model is used for the spatial
interpolations. This model incorporates two location variables (latitude and longitude) and a third “pattern” variable
(Tait, Sturman, and Clark 2012). The software used for the interpolations is ANUSPLIN (McKenney et al. 2011). We
used the VCSN data in the grid that is the closest to the walk(s) in modelling.

3 Results
3.1 Temporal components from decomposition and modelled separately
Each series from VC and weather parameters were decomposed as per Equation (1). Here, only a portion of results from
wind speed series were shown as Fig.2. By doing so:

1. the long term (LT) trends shown in red, here is Tt for wind speed as an example, were revealed as the una-
justed trend, denoted also as trend_unadj_nonLinear. The same were applicable to VC series where we got
trend_unadj_nonLinear for VC.

2. irregularities or Rt as extreme high wind speed as an example here, could have less impact on corresponding visitor
counts’ Rt, as each temporal component were modelled separately by ANNs.

3. cyclic signal are St component and were also modelled separately by ANNs.

3.2 Summed residuals from ANNs for each temporal components as the weather adjusted
trend

ANNs models residuals were extracted and summed from trend component Tt, seasonal component St and a reminder
pattern Rt, which is the weather adjusted trend. Fig.3 and 4 compared weather adjusted with adjusted trend on the daily
and yearly level.
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4 Discussions
In Fig.3, in general, trend_adj_nonLinear has smaller peak in summer but smaller depth of trough in winter in terms of
on visitation counts than trend_unadj_nonLinear. This suggests weather adjustment worked: had the extreme weather
events or unusual warm or cold seasons’ effect reduced or even removed, we can get the true demands of visitation which
should be ‘smoother’ than visitation that were not weather adjusted. In addition, both trend_adj_nonLinear and
trend_unadj_nonLinear curves still reflected the seasonal pattern of original visitation counts.

What’s more interesting is in Fig.4, as we know globally as well as New Zealand, there is a general trend of global
warming, where weather indicators like TMIN over the studied years are on the rise. This means there were more and
more better days in favorite of tramping and walking, which is reflected and aggregated in the obs. However, obs is not
necessarily true demands of visitation or may not a genuine indicator of the popularity of a walking site: had the global
warming were not happening, the site may not be as popular as what it suggested by obs, but the more realistic popularity
may be milder shown by the curve of trend_adj_nonLinear.

5 Recommendations and future works
It will be interesting to see the current approach being applied to other New Zealand walks. This study also took a
none-or-all approach to address weather adjustment. It is worth to consider a more granular adjustment where only the
most influential weather parameters on a site is to be adjusted.
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