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Abstract

This article reports how weather effects were singled out and quantified on visitations for New Zealand’s walks,
employing an AI method. This includes:

1: a research statement
2: a gentle introduction to Neural Networks models and model specifications
3: sensitivity analyses: teasing apart weather effects from both holiday and weekend effects
4: case studies: weather impact on sites with close geo-locations, an inderect way to validate complex models
5: Recommendations and future works
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1 Introduction and preview of the tools
NZ is the home of hundreds of tracks geographically distributed across New Zealand. It is known that those track locations
are impacted by heterogeneous weather patterns, with various degrees, which unavoidably influence Visitors’ decisions to
visit. What complicated visitor’ decisions also include weekends or/and public holiday effects, i.e., visitors more likely to
go during (long) weekends or/and holidays.

In this pioneer study, an AI approaches has been adopted that can tease apart weather impacts from weekend and
holiday effects on visitor numbers on any tracks.

The output (Fig.1 and Fig.2) of this study can help infrastructure planners, pricing teams, managers and directors to
make sound management decisions.

Figure 1: Weather effect on its original and standarised ([0,1]) scale
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Figure 2: Weather effect on its original and standarised ([0,1]) scale

2 Methodology
We are living in the world that increasingly rely on products and services featured some Artificial Intelligence (AI). AI,
especially those based on Artificial neural networks (ANNs), are rapidly becoming essential and dominant for analysis of
complex data and for decision support.

ANNs are highly parameterized, non-linear models with sets of interconnected processing units called neurons that can
be used to approximate the relationship between input and output signals of a complex system (Stefaniak, Cholewiński,
and Tarkowska 2006). Typically, ANNs are applied to predict the response of one or more variables given one to many
explanatory variables, where smooth functions are fitted to dataset while residual error are minimized through iterative
training (Hornik 1991)

Compared to conventional statistical models where traditional statisticians used (e.g., generalized linear/additive
regression), ANNs have been proved to have a more powerful (probably unmatched) predicting capability. Leverageing
ANNs such advantages, in this study, we are interested to use it to 1) predict visitor counts (VC), 2) quantify and explain
what predictor(s) are most influentials among a range of confounding predictors/factors on a specifc track. Based on this,
We will derive a generic weather index for each track that single out the effect from the weather predictors.

2.1 ANNs Model Specifications
The input is a set of predictors: four weather parameters (daily wind speed (WS), daily minimal temperature (T), daily
rain amount (Rain), daily solar radiation (SR)), daily holiday indicator (flagged as 0 or 1), weekend indicator (flagged as 0
or 1) and a various number of lagged weather parameters. The output is daily VC.

The primary reason to consider lagged structure in model specifications is weather parameters are usually autocorrelated.
Both over and under -specification of lags were known to have impact on the models response, i.e., VC. In this study, we
followed Wang and Lu (2006b) and Lu and Wang (2014) to identify the optimal lags. For a more systematic, generic and
rigorous treatment on the effects of past history of predictors, we recommend the work from Jørgensen (2004).
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2.2 Peak-season models to establish daily relationship between VC and its influentials
Daily data of both VC and weather parameters from months only in peak season: Oct., Nov., Dec., Jan., Feb., Mar. and
Apr. were used in modelling. Data in peak season months from all available years were pooled and used. All available
years here refer to years available in VC data. This is suppose to reduce the ‘noise’ when modelling: only months in peak
seasons, visitors are abundance.

2.3 ANNs configuration
Number of layers of ANNs can affect models performance. We tested a range of hidden layers and found single hidden
layer mostly sufficed our purpose. Increased layers, in some cases, did increase prediction accuracy, but such gains are
little and negligible. Root mean squared errors (RMSE) were used as the metric in model selections. For a through
consideration of ANNs and its applications, we recommend the works from Subana Shanmuganathan (2016).

2.4 Initial models testing
Initially, we tested configured ANNs on its ability to rank relative importance of inputs predictors on two selected New
Zealand Walks: Tongariro Alpine Crossing and Dolomite Point. Encouraging resutls were obtained: Tongariro Alpine
Crossing are almost twice as much as affected by weather (summed by all 4 weather parameters) compared to Dolomite
Point, which likely reflected the fact and experience as per the subject matter expert from tourism industy.

2.5 Sites selection to further build a picture of weather impact across New Zealand
DOC owns 700+ tracks/walks across New Zealand. VC data on each walks has variant qualities, which pose a risk that
could compromise ANNs modelling. Based on known ANNs performance and quality of VC data on two walks in Section
2.4, three criteria were considered when candidates walks were picked for ANNs modelling:

1. low % of hourly VC data missing (<= 10%)
2. high % of active hours: hours with VC > 0 (>= 40%)
3. ideally high number of years with data availability (>= 2)

This results in 40+ candidates sites picked for modelling.

2.6 Source of weather data and simulation software
All daily weather data were estimated on a regular (~5km) grid covering the whole of New Zealand, i.e., VCSN data
simulated by NIWA. The estimates are produced every day, based on the spatial interpolation of actual data observations
made at climate stations located around the country. A thin-plate smoothing spline model is used for the spatial
interpolations. This model incorporates two location variables (latitude and longitude) and a third “pattern” variable
(Tait, Sturman, and Clark 2012). The software used for the interpolations is ANUSPLIN (McKenney et al. 2011). We
used the VCSN data in the grid that is the closest to the walk(s) in modelling.

2.7 Simulations for weather sensitivity analysis after ANNs modelling
ANNs are not statistical models. Once generated, ANNs are not statistically identifiable (deterministic) at all. For a
given dataset and configuration, there can be unlimited numbers of ANNs with different weights that could generate very
different predictions. Usually, the implicit relationship built by ANNs between the input and outputs are difficult to be
intepretated directly, let alone ranking predictors relative importance or aseessing models’s sensitivity. As such, a (always)
common criticism is ANNs are notoriously known as ‘black box models’ that offer minimal insight into relationships
between inputs and outputs variables. Wang and Lu (2006a) and among a few of others provided a rebuttal to this
concern by describing methods to extract information about such variable relationships from ANNs. Here, based on
solutions especially in Wang and Lu (2006a), we provided another version of methods to explore the relationship between
the outcome variable, VC, and predictor(s) of interest.

Our methods, in a nutshell, is to explore the relationship of VC and a predictor of interest, say, WS, while holding other
covariates at constant values (from 5th, 25th, 50th, 75th to 95th quartile), after ANNs being built.

As an example for illustration, let’s say if we want to know the effect of WS on VC in Tongariro Alpine Crossing on
Holiday and Weekend scenario.

Steps

1. calculate ith (e.g., 5th) quartile for other weather covariates: T, SR and Rain on the daily data for Holiday and
Weekend

2. plug ith quartile for other weather covariates data into ANNs
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3. while holding 5th quartile for other weather covariates as constants, vary WS values from 0 to its known daily
maximum, record the VC outputs from ANNs

4. run a linear regression model between VC outputs and WS, record and graph such linear regression model: slope,
intercept, p-value and R-squared

5. the slope: -51.7 (and the intercept: 734) are WS effect on VC in this scenario, shown in Fig.3a

In this way, for a particular weather parameter, (WS here), we examined its effect on 20 possible scenarios: 5 (quartiles of
other weather covariates) × 2 (weekend or not) × 2 (holiday or not) in Fig.3. Slopes and intercepts were then standardized
whcih allow each slope in regression lines (i.e., weather effects) are comparable. Therefore, WS effect WS on VC in
Tongariro Alpine Crossing on Holiday and Weekend scenario is -0.78, which was the standardized slope.

The overall effect for the particular weather parameter, (WS here) was a sum of the standardized slopes (after taking
absolute values) of all 20 scenarios. For Tongariro Alpine Crossing, its effect was 14.157 as shown in Fig.1, 3 and 4.

Following the same steps and procedures above, we obtained other 3 weather parameters effects on Tongariro Alpine
Crossing as shown in Fig.1 and 4. This allows us to quantify effects for each weather parameter separately and rank the
relative importance of each weather parameters. The overall weather effects on any particular walks then is a simple sum
of the effects from each separate weather parametrs. For Tongariro Alpine Crossing, it is 40.321.

We then processed each weather effects and its overalls for other eligible candidates sites selected as per Section 2.5 and
shown in Fig.1.

The overalls of weather effects then were scaled in the range of [0,1], which allows us to rank the weather impact site-wise,
as shown in Fig.1 and Fig.2
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3 Case studies: weather impact on sites with close geo-locations
Track sites with close geo-locations are supposed to be have similar weather impact (especially when visitation levels
are similar). It is interesting to test how AI models interpret this and validate this.

in Fig.5 and 6 we singled out such a paired sites: Great Lake Trail, Kawakawa Bay and Great Lake Trail, W2K Track,
and show you how similar weather impact could be on each’s visitations.
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4 Results and Discussions
4.1 Classification of weather impact across NZ
Four levels of weather imapct were considered to classify weather impact on visitations across NZ

1. Level 1: weak. All weather Index is in the range of 0 to 0.25
2. Level 2: lower medium. All weather Index is in the range of 0.25 to 0.5
3. Level 3: higher medium. All weather Index is in the range of 0.5 to 0.75
4. Level 4: strong. All weather Index is in the range of 0.25 to 1
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